Package 'Rtauchen'

Title: Discretization of AR(1) Processes
Description: Discretize AR(1) process following Tauchen (1986) <http://www.sciencedirect.com/science/article/pii/0165176586901680>. A discrete Markov chain that approximates in the sense of weak convergence a continuous-valued univariate Autoregressive process of first order is generated. It is a popular method used in economics and in finance.
Authors: David Zarruk Valencia & Rodrigo Azuero Melo
Maintainer: David Zarruk Valencia <[email protected]>
License: GPL (>= 2)
Version: 1.0
Built: 2024-10-31 22:08:59 UTC
Source: https://github.com/davidzarruk/rtauchen

Help Index


Rtauchen

Description

This function generates a matrix of transition probabilites of a finite-state Markov chain that mimics an AR(1) process with persistence parameter llamda, standard deviation ssigma and a fixed parameter m.

Usage

Rtauchen(ne, ssigma_eps, llambda_eps, m)

Arguments

ne

Number of points of the grid of the finite-state Markov chain that mimics the AR(1) process

ssigma_eps

Standard deviation of exogenous shock in the AR(1) process

llambda_eps

Persistence parameter of the AR(1) process

m

Tauchen parameter for the width of the process (number of standard deviations of the AR(1) process covered by the grid)

Details

See Tauchen (1986) for details.

Value

A matrix with the corresponding to the transition matrix of the finite-state Markov chain that approximates the AR(1) process

Examples

results = Rtauchen(2, 1.0e-5, 0.1,0.4)
results

Tgrid

Description

This function generates a grid of a finite-state Markov chain that mimics an AR(1) process with persistence parameter llamda, standard deviation ssigma and a fixed parameter m.

Usage

Tgrid(ne, ssigma_eps, llambda_eps, m)

Arguments

ne

Number of points of the grid of the finite-state Markov chain that mimics the AR(1) process

ssigma_eps

Standard deviation of exogenous shock in the AR(1) process

llambda_eps

Persistence parameter of the AR(1) process

m

Tauchen parameter for the width of the process (number of standard deviations of the AR(1) process covered by the grid)

Details

See Tauchen (1986) for details.

Value

An array with the grid points of a finite-state Markov chain which approximates the original AR(1) process.

Examples

results = Tgrid(5, 0.02, 0.98, 3)